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1  |  INTRODUC TION

Buildings have become our most intimate ecosystems, and our inter-
actions with microorganisms that colonize the built environment (BE) 
can help shape our microbiome and can have effects on inhabitants' 
health. Fungi are a highly diverse domain, and their presence has long 
been established in the BE (Solomon, 1975). Previous studies have 
shown the BE mycobiome is composed mainly of saprotrophs; mold 
and yeasts such as Alternaria, Aspergillus, Cladosporium, Penicillium, 
and Wallemia (Martin- Sanchez et al., 2021; Ren et al., 2001; Samson 
et al., 2011; Taylor et al., 2014). Research has focused on buildings with 
excess moisture due to leaks caused by building damage, plumbing 

faults, or condensation (Adams et al., 2020; Jayaprakash et al., 2017; 
Pasanen et al., 2000; Sudakin, 1998; Torvinen et al., 2006; Trout 
et al., 2001). Under these conditions, fungi can flourish and function 
as sources of indoor pollutants by emitting spores, fungal fragments, 
mycotoxins, and volatile organic compounds which can exacerbate 
the onset of disease including asthma, trigger allergies, and have 
been associated with sick building syndrome and other respiratory 
diseases (Cooley et al., 1998; Fu et al., 2021; Karvala et al., 2010; Li & 
Yang, 2004; Simon- Nobbe et al., 2008; Soeria- Atmadja et al., 2010; 
Trout et al., 2001). Besides the health concerns, fungi can also cause 
structural damage to buildings resulting in considerable economic 
costs (Gámez- Espinosa et al., 2020; Haas et al., 2019; Schmidt, 2007).
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Abstract
Multiple fungal species, including potential opportunistic pathogens have been pre-
viously identified in water systems. Here, we investigated over 250 restroom sink 
fungal communities across a university campus and evaluated their diversity and 
core taxa present. Remarkable similarity in mycobial community composition was ob-
served across buildings with Ascomycota consistently dominating. We found a core 
mycobiome independent of the building sampled, that included Exophiala species, 
potential opportunistic pathogenic black yeasts. Other prevalent and dominant taxa 
included Saccharomyces and Fusarium, common built environment fungi. The frequent 
presence of Malassezia, a common skin commensal, showed the external influence of 
human activities as a source of fungi to sinks. The study represents a novel exploration 
of sink P- traps mycobial communities from a public area and highlights their impor-
tance as reservoirs of possible pathogenic fungi, as well as emphasizing the relevance 
of further research in this understudied ecosystem within the built environment.
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2  |    WITHEY et al.

Seasonal patterns, environmental gradients and other extrin-
sic factors primarily determine the indoor fungal diversity and 
composition, but more local features such as building function 
and construction can also contribute to shaping the mycobiome 
within individual buildings (Adams et al., 2013a, 2014, 2016; 
Amend et al., 2010; Barberán, Ladau, et al., 2015; Martin- Sanchez 
et al., 2021; Stephens, 2016; Wong et al., 2008). Outdoor air is an 
important source of indoor fungi. Culturable and non- culturable 
fungi concentrations and composition of species correlate in out-
door and indoor air and other BE surfaces (Adams et al., 2014, 
2013a, 2013b). However, the most common indoor fungi are not 
necessarily identical to that of outdoors; for example, Penicillium 
is usually more common in indoor air (Hyvarinen et al., 1993; Li 
& Kendrick, 1995). Interestingly, while occupants are the pri-
mary source of bacteria to the BE (Hospodsky et al., 2012; Lax 
et al., 2014; Meadow et al., 2014), residents have been shown to 
either minimally (Adams et al., 2014) (Adams et al., 2014) influ-
ence or not determine fungal community structure (Dannemiller 
et al., 2016; Martin- Sanchez et al., 2021). A study comparing 
indoor air (private homes) and outdoor air, revealed a positive 
correlation between occupants and mycobiome composition 
(Martin- Sanchez et al., 2021). The study showed that increased 
number of occupants resulted in higher exchange and transport of 
air particles which drove indoor communities toward outdoor spe-
cies composition. It is evident that humans can be a direct source 
of fungi especially dermatophytes such as Malassezia (Adams 
et al., 2013b; Pitkäranta et al., 2008). Restroom surfaces in par-
ticular were found to host highly diverse mycobiomes, and evi-
dence suggests that they are sourced from human activities such 
as shoes (Fouquier et al., 2016).

The plumbing or water distribution systems (WDS) are one of 
the most favorable environments for microbial growth in healthy 
buildings (Adams et al., 2013b). Experiments with temporarily 
wetted surfaces have shown to encourage the growth of fungi 
within days or weeks (Pasanen et al., 1992). Endogenous growth 
has been shown on sink surfaces, in sink drains and the wider WDS 
(Adams et al., 2013b; Hamada & Abe, 2010; Short et al., 2011; 
Zupančič et al., 2016). Adams et al. (2013b) revealed differences 
in drains between kitchens and bathrooms in private homes and 
suggested a distant drain niche due to the high frequency of 
which thermotolerant fungi were observed, namely Fusarium and 
Exophiala. Aerosolization of fungal material rather than direct con-
tact poses a greater risk for health (Górny et al., 2002; Kuhn & 
Ghannoum, 2003), and WDS including sinks have demonstrated 
aerosolization of fungi resulting in adverse effects on health 
(Anaissie, Kuchar, et al., 2001; Anaissie, Stratton, et al., 2001; 
Chang et al., 2006; Short et al., 2011). Moreover, drains have been 
suggested to be a reservoir of potentially serious fungal pathogens 
that could result in outbreaks through droplet- mediated disper-
sion (Hino et al., 2020). Despite the importance, there has been 
relatively little research into how fungal communities in WDS and 
drainage piping are structured, particularly in the public domain. In 

this study, we investigated mycobial community composition and 
structure of sink P- traps distributed across a university campus, 
specifically addressing the following objectives: (i) which fungi 
dominate P- trap mycobiome and do they correspond to taxa pre-
viously found in similar environments; (ii) whether the identified 
dominant taxa are found ubiquitously across all sinks; and (iii) how 
the mycobial communities are structured and whether or not they 
are influenced by the BE types.

2  |  METHODS

2.1  |  Sample collection and DNA extraction

Samples from P- traps were collected from 20 different buildings 
across the University of Reading's Whiteknights campus during early 
November 2021. All buildings selected had accessible restrooms. 
Buildings selected were mainly those used for teaching; however, 
some buildings were used for dining or recreational activities. A 
total of 412 samples were collected. The methods for collecting 
P- trap samples were the same as described in Withey et al., 2021. 
Briefly, sterile cotton swabs were inserted using a sampling rod 
into the P- Traps and circumference of pipe swabbed for 5 s. Swabs 
were stored in 1.5 ml tubes in a freezer at −20°C until required for 
DNA extraction. Metadata was recorded on each of the swabs col-
lected (Table S1). Genomic DNA was isolated from the swabs using 
HigherPurity Soil DNA Isolation kit (Canvax Biotech), according to 
the manufacturer's protocol. Negative controls were blank swabs 
extracted by the same method.

2.2  |  PCR amplification and Illumina sequencing

The ITS2 region of the extracted DNA was amplified using for-
ward primer fITS7 (GTGARTCATCGAATCTTTG) and reverse 
primer ITS4 (TCCTCCGCTTATTGATATGC) (Ihrmark et al., 2012). 
Each PCR reaction contained the following components; 22 μl of 
ReadyMix Taq PCR Reaction Mix (Sigma- Aldrich), 0.5 μl of each 
10 μM forward and reverse primers, 5 μl of template DNA, and 
22 μl of UltraPure DNase/RNase- free distilled water (Invitrogen). 
Thermocycling conditions were 30 s initial denaturation at 95°C, 
followed by 35 cycles of 30 s denaturation at 95°C, 30 s anneal-
ing at 50°C, 2 min extension at 72°C, and a final elongation at 
72°C for 5 min. PCR reactions included negative template controls 
in which the template DNA was replaced with 5 μl of UltraPure 
DNase/RNase- free distilled water to ensure PCR reagents and 
equipment were not contaminated. After PCR amplification, PCR 
products were purified with Agencourt AMPure XP magnetic 
beads (Beckman Coulter).

Samples that did not amplify, and those post clean- up that 
had no band present on gel were excluded from barcoding and 
subsequent sequencing. Those samples that did not amplify were 
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    |  3WITHEY et al.

mostly associated with particular buildings (Table S2). A total of 
343 purified PCR products underwent a second PCR reaction to 
add Illumina- specific adapters and unique barcodes. In short, 25 μl 
reaction mixtures were prepared by adding 9.5 μl of ReadyMix Taq 
PCR Reaction Mix (Sigma- Aldrich), 2.5 μl of both forward index 
and reverse index primers (4 μM each), 9.5 μl Nuclease- free water 
and 1 μl of the purified PCR product. The thermocycle conditions 
for the second round of PCR were initial denaturation of 95°C for 
2 min, and then 8 cycles of denaturation at 95°C for 15 s, anneal-
ing at 55°C for 30 s and extension at 72°C for 30 s, followed by 
a final extension of 72°C for 10 min. NGS normalization 96- Well 
Kit (Norgen) purified and normalized the samples before being 
pooled. An amplicon library spanning ITS2 region was sequenced 
at a concentration of 10 pM and merged with 5% PhiX on an 
Illumina Miseq platform using V3 chemistry (Illumina Inc.) at UK 
Centre for Ecology & Hydrology.

2.3  |  Bioinformatics pipeline and 
statistical analyses

The obtained sequenced paired- end reads were processed using 
PIPITS (Gweon et al., 2015). All further data processing and statisti-
cal analysis were performed in R, version 3.6.3 (R Core Team, 2022) 
through RSTUDIO.

Phyloseq version 1.30.0, Tidyverse version 1.3.1, and vegan 
version 2.5.7, were used for data manipulation, plotting, and eco-
logical analyses (Mcmurdie & Holmes, 2013; Oksanen et al., 2020; 
Wickham et al., 2019). Plots were further refined, and results visu-
alized using ggplot2 version 3.3.5. Initially, low abundant OTUs (<10 
reads) were removed from the ITS data, to reduce spurious taxa, and 
only OTUs identifiable to phylum were included for analysis. Three 
buildings were then removed from subsequent statistical analysis 
due to 5 or less samples remaining after rarefaction.

Beta diversity was evaluated and visualized with non- metric 
multidimensional scaling (NMDS) ordination of sink samples 
using Bray– Curtis dissimilarity distances and Jaccard indices 
constructed using the vegdist function. To assess the correlation 
between environmental variables (Building and Gender of re-
stroom sampled) permutational multivariate analysis of variance 
(PERMANOVA; 999 permutations) was performed individually 
on the two variables using adonis. Additionally, Tukey's test was 
used for post- hoc analysis to further investigate the significant 
differences or similarities between pairs of buildings. Betadisper 
was used to test the homogeneity of variance among groups and 
analysis of variance (anova) tested for the significant difference in 
these variances. Alpha diversity was also assessed by calculating 
species richness (number of OTUs), Shannon diversity and Pielous 
evenness. Significant differences in alpha diversity across building 
and restroom gender were calculated using the non- parametric 
Kruskal- Wallis test. Taxonomic analysis of the data was performed 
from Phylum to Genus and core mycobiome identified by their 
prevalence and relative abundance. Plot_core from the microbiome 

package version 1.8.0, was applied to visualize the core OTUs 
(Lahti & Shetty, 2017).

3  |  RESULTS

3.1  |  Data features

After bioinformatic processing through PIPITS, the fungal data-
set contained 3862 OTUs (9,265,250 sequences), distributed 
across 343 samples from 20 buildings throughout the University 
of Reading's campus. The number of reads per sample varied be-
tween 2 and 81,693 (mean/median = 27,012/27,215). Rarefying 
to an even sequencing depth of 5000 reads per sample resulted 
in 42 samples being removed (301 samples remaining) (Figure S5). 
Furthermore, removal of buildings with not enough individual 
samples resulted in a total of 289 samples for downstream analy-
sis. The remaining data comprised 2432 OTUs, with an average of 
217 OTUS per sample (Min 36 OTUs, Max 417 OTUs) (Table S3). 
The highly abundant fungal OTUs (relative abundance below 1%) 
were also widely distributed (prevalence of 50% or more). Of the 
OTUs assigned to the domain fungi, there were seven identifiable 
phyla. Those identified to phylum, were further classified into 25 
known classes, 88 orders, 220 families, 375 genera and 605 spe-
cies (>85% identity).

3.2  |  Taxonomic distribution

The fungi identified to Phylum were represented by seven phyla, of 
which two accounted for the majority of taxa (<99%); Ascomycota 
(91.89%) and Basidiomycota (7.99%). Ascomycota dominated 
across all buildings sampled (Figure 1a; Figure S1a). The top three 
classes were Sordariomycetes (39%), Eurotiomycetes (24.37%) and 
Saccharomycetes (12.46%). The main orders were Hypocreales 
(37.26%), Chaetothyriales (23.9%), Saccharomycetales (12.46%). 
The dominant identifiable families were Nectriaceae (21.87%), 
Herpotrichiellaceae (20.06%) and Saccharomycetaceae (10.94%). 
Of the 375 genera classified, Exophiala (19.33%), Saccharomyces 
(10.92%), Fusarium (5.36%), Cyphellophora (3.42%), Malassezia 
(2.87%), BisiFusarium (1.51%), and Ramularia (1.35%) had a relative 
abundance >1%. The majority of the genus Exophiala was identified 
as the species Exophiala lecanii- corni (61.2% of the reads classified as 
the genus Exophiala). Exophiala lecanii- corni was the top identifiable 
species and accounted for 11.84% of reads across all species. The 
OTUs that had >1% RA accounted for 60.82% of all reads (Table 1). 
Moreover, the phyla Ascomycota was highly prevalent (100% of 
samples) and, across buildings a notable similarity was observed in 
phyla and family taxonomic compositions as well as at the genus 
level when looking at the average relative abundance (Figures 1b and 
2a; Figure S1b). However, taxonomic analysis of individual samples 
showed variation in relative abundances of the top genera between 
some sinks within a building (Figures S2 and S3, Table S4).
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4  |    WITHEY et al.

3.3  |  Core mycobiome

Thousand eight ninty one OTUs were found in <10% of samples. 
No OTU was identified in all samples, however the three OTUS with 
RA > 1% were present in 90% or more of sinks samples. The most 
prevalent OTU (OTU1942, 96% of samples) was also the second most 
abundant and was classified to the genus Saccharomyces (Table 1). A 
core microbiome analysis was performed to check the prevalence of 
OTUs across sinks sampled. An OTU was considered part of the core 

mycobiome if it was present in at least 80% of samples. Eight OTUs 
were considered part of the core mycobiome (Figure 3). Following 
OTU1942 (classified as g_Saccharomyces), maximum prevalence 
was shown by OTU196 (91% of samples, classified as g_Malassezia), 
OTU2067 (90%, o_Hypocreales), OTU2835 (89%, f_Nectriaceae), 
OTU956 (89%, s_Exophiala_lecanii- corni_SH1508706.08FU), OTU1710 
(85%, g_Fusarium), OTU204 (84%, g_Saccharomyces), OTU1607 (80%, 
g_Fusarium). The second most prevalent OTU was classified to the 
genus Malassezia. The remaining six core OTUs corresponded to 

F I G U R E  1  Taxonomic analysis. (a) Boxplot showing the distribution of the dominant phyla. “Other” represents remaining 5 phyla. (b) 
Bubble plot of mean relative abundance of the most abundant fungal families (>1%) by building. Across all buildings, the mean distribution 
of families is generally uneven as a few taxa tend to dominate. No strong compositional difference is observed between buildings based on 
families when comparing mean relative abundances. Circle size indicates relative abundance and color of bubble represents the phylum from 
which the family is found. Abbreviations on x- axis correspond to the following buildings; AGR, Agriculture; ARC, Archaeology; ART, Art; 
CHE, Chemistry; EAT, Eat at the Square; EDM, Edith Morely; HNU, Harry Nunsten; HBS, Henley Business School; JJT, JJ Thompson; LIB, 
Library; MAT, Maths; MINL, Mingella; PAH, Park House; RSP, Sports Park; STU, Student Union; URS, URS; WHK, Whiteknights.
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TA B L E  1  Identity of top OTUs (>1% relative abundance). Overall abundance (total percentage of reads) and prevalence shown

Total reads (%) Prevalence (%)

OTU2835 f_Nectriaceae 11.67 88.59

OTU1942 g_Saccharomyces 9.89 96.31

OTU2067 o_Hypocreales 9.07 89.60

OTU956 s_Exophiala_lecanii- corni_SH1508706.08FU 6.59 88.59

OTU1988 o_Hypocreales 3.38 71.48

OTU1844 s_Cyphellophora_europaea_SH1636081.08FU 2.90 60.07

OTU2526 f_Didymellaceae 2.69 71.81

OTU712 s_Exophiala_aquamarina_SH1240520.08FU 2.13 65.77

OTU1710 g_Fusarium 2.01 85.23

OTU196 s_Malasseziaceae_sp_SH1547563.08FU 1.90 91.28

OTU1289 f_Sympoventuriaceae 1.80 65.77

OTU1713 g_Bisifusarium 1.51 70.13

OTU1607 g_Fusarium 1.49 79.53

OTU3500 f_Helotiales_fam_Incertae_sedis 1.35 57.72

OTU1264 s_Exophiala_equina_SH1635779.08FU 1.35 56.04

OTU919 s_Exophiala_phaeomuriformis_SH1529587.08FU 1.09 52.01
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    |  5WITHEY et al.

three orders Saccharomycetales (one OTU), Hypocreales (four OTUs), 
Chaetothyriales (one OTUs). Although these eight OTUs represent a 
small fraction of the total number of OTUs they were among some 

of the most abundant OTUs (together accounting for 42.97% of all 
reads). If the threshold for what was considered a core OTU was low-
ered to more than 70%, 30 OTUs would be deemed core.

F I G U R E  2  Composition of mycobial communities by building. (a) Fungal composition: Relative abundances of top genera (>1%) by 
building shown. Family of genera is italicized and in brackets below genus in the legend. (b) Beta diversity. Non- metric multidimensional 
scaling (NMDS) plots of dissimilarity metrics. Each point represents a sample; color indicates building. (left) Bray- Curtis (abundance) and 
(right) Jaccard (presence- absence). (c) Post- hoc Tukey analysis: Percentage on y- axis of non- significant (p > 0.05), significant (0.05 ≥ p > 0.01), 
and highly significant (p ≤ 0.01), as indicated by color, building interactions. Henley business school (HBS) had the highest percentage of 
significant values (50% or more) therefore, its composition significantly differed from half or more of the buildings. Building abbreviations as 
follows; AGR, Agriculture; ARC, Archaeology; ART, Art; CHE, Chemistry; EAT, Eat at the Square; EDM, Edith Morely; HNU, Harry Nunsten; 
HBS, Henley Business School; JJT, JJ Thompson; LIB, Library; MAT, Maths; MINL, Mingella; PAH, Park House; RSP, Sports Park; STU, 
Student Union; URS, URS; WHK, Whiteknights.
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6  |    WITHEY et al.

3.4  |  Mycobiome composition and diversity

Associations of microbiome compositions with factors were as-
sessed qualitatively and quantitatively using PERMANOVA and two 
beta- diversity metrics (Bray- Curtis distance and Jaccard index), 
respectively. For both metrics, there was no clear separation ob-
served in the NMDS plot of samples by their building (Figure 2b). 
PERMANOVA showed groups to be significantly different when 
samples were grouped by building (F.model = 2.379, R2 = 0.12643, 
p = 0.001 (Bray- Curtis); F.model = 1.6981, R2 = 0.09364, p = 0.001 
(Jaccard)); however, only a low proportion of the variance in my-
cobial community composition was explained. A post- hoc Tukey 
test showed that a few specific buildings were significantly differ-
ent from others and could be partly accountable for the significant 
PERMANOVA result (Figure 2c, Table S5). But overall, post- hoc 
analysis showed that the majority of buildings were not signifi-
cantly different from one another. One building in particular, Henley 
Business School (HBS) differed significantly from 50% or more of 
buildings. However, removing this building from PERMANOVA 
did not change the overall result F.model = 2.0739, R2 = 0.11267, 
p = 0.001 (Bray- Curtis); F.model = 1.5774, R2 = 0.08807, p = 0.001 
(Jaccard). There were also significant differences in beta diversity 
(homogeneity of group dispersions) between the buildings (anova, 
df = 16, F = 6.9652, p < 0.001 (Bray- Curtis); df = 16, F = 5.7269, 
p < 0.001 (Jaccard)) (Figures S4 and S6). It is important to note that 
PERMANOVA is sensitive to heterogeneous group dispersions 
within an unbalanced design (Anderson, 2017), and the unequal 
number of samples across buildings could be partially responsible 
for the significant differences between the buildings. PERMANOVA 
is conservative when high dispersions occur in larger groups and 
liberal when high dispersions occur in smaller groups (Anderson & 
Walsh, 2013). High dispersion was observed in many of the smaller 
groups (i.e., Art and Math), potentially causing increased rejection 
rates of the null hypothesis, thus more likely to find a significant 
result. Gender had no significant effect on community composition 
(PERMANOVA, F.model = 0.98694, R2 = 0.01064, p = 0.469 (Bray- 
Curtis); F.model = 0.97977, R2 = 0.01054, p = 0.49 (Jaccard)), and 
their dispersions were homogenous when using both indices (anova, 
df = 3, F = 2.5618, p = 0.05519 (Bray- Curtis); df = 3, F = 1.4294, 
p = 0.2344 (Jaccard)).

Variation in alpha diversities across the buildings sampled were 
analyzed (Figure 4). Among buildings, Henley Business School (HBS) 
was observed to have the highest mean richness (mean 295 OTUs). 
This finding was replicated with the two other alpha- diversity met-
rics. Whereas, Student Union (STU) was found to have the lowest 
means for all alpha diversity metrics. Kruskal- Wallis tests were used 
to determine the influence of building on community alpha- diversity 
(Figure 4). OTU richness, diversity (Shannon) and Pielou's evenness 
differed significantly by building. Pairwise comparisons for buildings 
were calculated using Wilcoxon tests for each of the alpha diversity 
metrics (Table S6). Multiple pairs of buildings were highly significant 
from one another which may contribute to the overall significant 
difference across all buildings. No significant associations of alpha 

diversity were detected with restroom gender (df = 3, Observed 
p = 0.09388, Shannon diversity index p = 0.09433, Pielou's even-
ness p = 0.1852).

4  |  DISCUSSION

Sinks, drains and their associated pipes offer a unique niche in the 
BE due to their continuous moisture, temporary fluctuations in tem-
perature, high pH due to regular use of detergents and potentially 
increased concentrations of organic matter. In this study, we ob-
served that the sink P- traps of various university buildings harbored 
diverse mycobial communities which were markedly similar between 
most buildings. There was a distinct core mycobiome with the most 
dominant taxa present across the majority of samples (>70%). Drains 
in residential settings were previously established to have shown 
clear evidence of both, harboring fungi due to deposition patterns 
and endogenous growth (Adams et al., 2013b). This was reflected in 
the public P- traps of this study with similar taxa identified, namely 
Exophiala, Fusarium and Malassezia. Also, overlapping with taxa in 
the above- mentioned study, taxa found also matched those found in 
other cultures and culture- independent studies of fungi identified in 
the BE, specifically restroom and plumbing environments.

In our study, of the identifiable genera, Exophiala was found to 
be the most abundant and ubiquitous. Exophiala is a saprotrophic 
“black yeast” and includes both terrestrial and waterborne species. 
It has also been shown to be oligotrophic, thermotolerant, survive 
high pH, and able to utilize surfactants as a source of carbon, namely 
detergents (Hamada & Abe, 2009; Isola et al., 2013; Nishimura 
et al., 1987; Zalar et al., 2011). Exophiala species can be considered 
opportunistic pathogens causing cutaneous and superficial infec-
tions (Chromomycosis) however, fatal systemic infections have been 
documented (Fothergill, 1996; Gold et al., 1994; Greig et al., 2003; 
Hiruma et al., 1993; Hopf et al., 2020; Martínez- González et al., 2008; 
Nachman et al., 1996; Woo et al., 2013; Zeng et al., 2007). This genus 
has previously been isolated from other water sources in the BEs 
such as, dishwashers, steam bath facilities, swimming pools, bath-
rooms, and associated drainpipes (Babič et al., 2015; Hamada & 
Abe, 2009; Lian & de Hoog, 2010; Matos et al., 2002; Nishimura 
et al., 1987; Porteous et al., 2003; Ruoff, 2002; Zalar et al., 2011). As 
well as from tap water and public drinking reservoirs (Biedunkiewicz 
& Schulz, 2012; Göttlich et al., 2002; Heinrichs, Hübner, et al., 2013; 
Heinrichs, Hü, et al., 2013). The most common identifiable species 
present in sinks P- traps was Exophiala lecanii- corni which was for-
merly proven to be a dominant component of water tap biofilms 
(Heinrichs, Hü, et al., 2013). Moreover, it is known to efficiently re-
move volatile organic compounds (VOC) from the air, therefore po-
tentially explaining its dominance in biofilms growing at the water- air 
interface (Pirnie- Fisker & Woertz, 2007; Woertz et al., 2001). 
Exophiala lecanii- cornii has been reported to mainly result in superfi-
cial mycoses affecting skin and nails but, in a rare occurrence caused 
keratitis (Lee et al., 2016; Miyakubo et al., 2020; Zeng et al., 2007). 
Exophiala's widespread distribution across a variety of indoor water 
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source environments, and its ability to survive more challenging eco-
logical pressures results in its unsurprising presence and dominance 
across sinks samples.

The second most dominant classifiable genus was Saccharomyces, 
and like Exophiala was highly prevalent (96% of samples). 
Saccharomyces is a common genus in indoor environments (i.e., dust) 
and is usually associated with humans (Barberán, Dunn, et al., 2015; 
Barberán, Ladau, et al., 2015; Dannemiller et al., 2016; Estensmo 
et al., 2021; Fouquier et al., 2016; Gupta et al., 2020; Martin- Sanchez 

et al., 2021; Viel et al., 2017). Fouquier and colleagues identified 
it as the most abundant and ubiquitous fungi in restroom floors. 
Furthermore, the most prevalent OTU (OTU1942) belonged to this 
genus, and was also the second most abundant OTU. OTU1942 was 
blasted against the NCBI database and classified as Saccharomyces 
cerevisiae at 97.05% percentage identity giving some clarity on what 
this OTU might be or its closest relative. S. cerevisiae is found in many 
natural niches in the environment and is also known for being a com-
mon fruit- associated fungus, gastronomically relevant, and is used in 

F I G U R E  4  Fungal alpha diversity. Boxplot of alpha diversity of fungal communities by building sampled. Species richness (number of 
OTUs), Shannon and Pielou's evenness shown. Each point represents a sample. p- value obtained from Kruskal- Wallis test shown above each 
plot.
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research laboratories (Moon & Lo, 2014). Similar to Exophiala spp., S. 
cerevisiae can utilize VOCs and is also tolerant to metals (Krauter & 
Krauter, 2002; Pirnie- Fisker & Woertz, 2007).

Fusarium of the family Nectriaceae (most abundant fam-
ily in present study) was another highly prevalent and abundant 
genus. Members of the family Nectriaceae are important plant and 
human pathogens, specifically, some Fusarium spp. are emerging 
fungal pathogens of increasing importance (Batista et al., 2020; 
Garber, 2001; O'Donnell et al., 2010; Pfaller & Diekema, 2004). It is 
thought that there are approximately 10 Fusarium species complexes 
that are related to human pathogens, of these, the notable two com-
plexes are members of the Fusarium solani species complex (FSSC), 
and the Fusarium oxysporum species complex (FOSC) which together 
comprise ~80% of infections (Batista et al., 2020). Moreover, cer-
tain FSSC and FOSC appear to be common in water systems, in-
cluding those of hospitals, posing a significant risk for nosocomial 
infections (Anaissie, Kuchar, et al., 2001; Babič et al., 2015; Hageskal 
et al., 2006; O'Donnell et al., 2004, 2007; Oliveira et al., 2016; 
Short et al., 2011). Infections caused by Fusarium spp. range from 
superficial and locally invasive to disseminated (van Diepeningen 
et al., 2015). For example, infections can vary from melanonychia 
to sinusitis to neutropenia (Anaissie & Nucci, 2002; Lee et al., 2002; 
Nucci & Anaissie, 2007). Additionally, the most abundant OTU 
(OTU2835) was classified to the family Nectriaceae. Upon blasting 
against NCBI database this OTU was further identified as a Fusarium 
(closest relative was Fusarium foetens, 96.71% percentage identity). 
Thus, the overall relative abundance of the genus Fusarium may be 
underrepresented, as only OTUs classified to genus were included. 
Therefore, the overall relative abundance of Fusarium may be similar 
to that of Exophiala (~19%). Alongside Exophiala, Fusarium was more 
frequently detected in drains of bathrooms and kitchens when com-
pared to other residential surfaces and, in another bathroom study, 
Fusarium was identified as one of the most common fungi (Adams 
et al., 2013b; Hamada & Abe, 2009). It is worth noting, however, 
that the ITS region has been shown to work poorly in differentiating 
between species of Fusarium as well as other highly speciose genera 
including Aspergillus, Fusarium, Penicillium and Trichoderma (Al- Hatmi 
et al., 2016; Stielow et al., 2015).

The remaining top genera from the phylum Ascomycota; 
Cyphellophora, BisiFusarium and Ramularia have been found in the 
BE. Cyphellophora and BisiFusarium have been identified in drinking 
and environmental water supplies, indoor water fittings, and drain 
outlets (Babič et al., 2017; Góralska et al., 2020; Heinrichs, Hü, 
et al., 2013; Hino et al., 2020; Lian & de Hoog, 2010). Moreover, 
Cyphellophora is another black yeast- like fungi, with several species 
previously isolated from clinical samples, mostly nails and skin (Feng 
et al., 2014; Lian & de Hoog, 2010). The genus Ramularia includes 
numerous plant pathogens, and its presence has been detected in 
indoor dust (Adams et al., 2020; Martin- Sanchez et al., 2021; Videira 
et al., 2016).

Notably, Malassezia was frequently detected. Malassezia are 
dominant members of the human skin mycobiome; therefore, 
their presence in P- traps is expected due to the shedding of fungi 

from skin during handwashing (Findley et al., 2013; Hospodsky 
et al., 2012; Theelen et al., 2018; Xu, 2015). This is further supported 
by Adams et al., who detected Malassezia in bathroom drains but 
not kitchen drains (Adams et al., 2013b). These commensal yeasts 
can be associated with common skin disorders such as dandruff and 
eczema (Thayikkannu et al., 2015; Theelen et al., 2018). Additionally, 
Malassezia has been shown to be far more abundant in indoor dust 
than outdoors and particularly abundant in bathrooms (Martin- 
Sanchez et al., 2021). Surprisingly, the study of restroom surfaces 
found only trace evidence of Malassezia, however, the samples ana-
lyzed were limited to one surface, floors, as the other two surfaces 
tested did not yield many fungi (Fouquier et al., 2016). The other two 
surfaces were those in contact with skin more frequently, toilet seats 
and soap dispensers. However, these exposed dry surfaces may not 
provide ideal conditions for sustaining microbial life. Furthermore, 
multiple species of Malassezia have demonstrated adherence to 
and formation of biofilms on abiotic surfaces, namely polyurethane 
(Angiolella et al., 2018; Cannizzo et al., 2007; Zareei et al., 2018), 
suggesting that they are capable of colonizing P- traps.

Overall, taxa that dominated, consistently had high prevalence 
and have been previously identified in other similar wet indoor en-
vironments. The black yeasts from Exophiala, the filamentous fungi 
of Fusarium, and the white yeast from Saccharomyces were common 
inhabitants of P- traps and have all been retrieved from tap water 
(Anaissie, Kuchar, et al., 2001; Gonçalves et al., 2006; Göttlich 
et al., 2002; Hageskal et al., 2007, 2009). Their large contribution 
to the total composition of P- traps was expected and agrees with 
published research, specifically, studies that sampled the external 
drain of domestic sinks (Adams et al., 2013b).

The most striking findings from our results was that there was 
little difference in mycobial communities between buildings. While 
we cannot suggest what variables are specifically responsible for the 
differences between buildings due to lack of metadata collected, we 
speculate that the sinks sampled across a campus will largely experi-
ence similar usage as they are primarily for handwashing and under 
a strict as well as consistent cleaning regime. Gender of restroom 
had no effect on mycobial community composition. Previous stud-
ies have shown that there was no difference in bacterial and fun-
gal communities between male and female restroom floor surfaces 
(Fouquier et al., 2016; Gibbons et al., 2015). It is also worth men-
tioning that this was the case for bacterial communities in P- traps 
(Withey et al., 2021).

Here, we provide a first insight into the mycobial communities 
of sink P- traps across publicly accessible and frequently used re-
strooms. The large sample size, in comparison to previous studies of 
domestic drains, has permitted a more extensive and generalizable 
observation of the communities present. Future studies may deter-
mine the community formation, stability over time, and responses 
to perturbations or stressors such as increased vigor and frequency 
of cleaning regimes. Furthermore, understanding mechanisms and 
routes of dispersion for fungi from sinks into the surrounding en-
vironment particularly in public areas is essential. This knowledge 
will inform future architectural and sink design, mitigation and 
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prevention of any prospective outbreaks. Little is known about the 
microbiology of sinks and their associate pipes, which we encoun-
ter in everyday life. Our findings present a glimpse of the mycobial 
community present in these understudied environments. Overall, 
we found that a diverse community of fungi are present in many 
sink P- traps, and P- traps appear to share similarities in their com-
positions, suggesting some stability to perturbations from differing 
sink usage. We also found that potentially pathogenic black fungi 
were prevalent in P- traps. Occurrence of black fungi in healthcare 
facilities with a large number of immunocompromised patients is of 
concern, but in areas such as universities the risk may be negligible. 
That said, maintaining good hygiene practices and regular cleaning 
should not be ignored.
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